In this study, a novel method for improving the simulation of wave propagation in Peridynamic (PD) media is investigated. Initially, the dispersion properties of the nonlocal Bond-Based Peridynamic model are computed for 1-D and 2-D uniform grids. The optimization problem, developed through inverse analysis, is set up by comparing exact and numerical dispersion and minimizing the error. Various weighted residual techniques, i.e., point collocation, sub-domain collocation, least square approximation and the Galerkin method, are adopted and the modification of the wave dispersion is then proposed. It is found that the proposed methods are able to significantly improve the description of wave dispersion phenomena in both 1-D and 2-D PD models.
Improved wave dispersion properties in 1D and 2D bond-based peridynamic media
Alebrahim R.
;Zaccariotto M.;Galvanetto U.
2022
Abstract
In this study, a novel method for improving the simulation of wave propagation in Peridynamic (PD) media is investigated. Initially, the dispersion properties of the nonlocal Bond-Based Peridynamic model are computed for 1-D and 2-D uniform grids. The optimization problem, developed through inverse analysis, is set up by comparing exact and numerical dispersion and minimizing the error. Various weighted residual techniques, i.e., point collocation, sub-domain collocation, least square approximation and the Galerkin method, are adopted and the modification of the wave dispersion is then proposed. It is found that the proposed methods are able to significantly improve the description of wave dispersion phenomena in both 1-D and 2-D PD models.File | Dimensione | Formato | |
---|---|---|---|
unpaywall-bitstream-2092907464.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.