A result due to R. Greenberg gives a relation between the cardinality of Selmer groups of elliptic curves over number fields and the characteristic power series of Pontryagin duals of Selmer groups over cyclotomic Zp-extensions at good ordinary primes p. We extend Greenberg’s result to more general p-adic Galois representations, including a large subclass of those attached to p-ordinary modular forms of weight at least 4 and level Γ0(N) with p ∤ N.

On bloch–kato selmer groups and iwasawa theory of p-adic galois representations

Longo M.;Vigni S.
2021

Abstract

A result due to R. Greenberg gives a relation between the cardinality of Selmer groups of elliptic curves over number fields and the characteristic power series of Pontryagin duals of Selmer groups over cyclotomic Zp-extensions at good ordinary primes p. We extend Greenberg’s result to more general p-adic Galois representations, including a large subclass of those attached to p-ordinary modular forms of weight at least 4 and level Γ0(N) with p ∤ N.
2021
File in questo prodotto:
File Dimensione Formato  
NJJM.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 470.69 kB
Formato Adobe PDF
470.69 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3398138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact