A coprime commutator in a profinite group G is an element of the form [x, y], where x and y have coprime order and an anti-coprime commutator is a commutator [x, y] such that the orders of x and y are divisible by the same primes. In the present paper, we establish that a profinite group G is finite-by-pronilpotent if the cardinality of the set of coprime commutators in G is less than 2ℵ0. Moreover, a profinite group G has finite commutator subgroup G′ if the cardinality of the set of anti-coprime commutators in G is less than 2ℵ0.
Strong conciseness of coprime and anti-coprime commutators
Detomi E.;
2021
Abstract
A coprime commutator in a profinite group G is an element of the form [x, y], where x and y have coprime order and an anti-coprime commutator is a commutator [x, y] such that the orders of x and y are divisible by the same primes. In the present paper, we establish that a profinite group G is finite-by-pronilpotent if the cardinality of the set of coprime commutators in G is less than 2ℵ0. Moreover, a profinite group G has finite commutator subgroup G′ if the cardinality of the set of anti-coprime commutators in G is less than 2ℵ0.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
2021-strong-coprime.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2103.04061v1.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Altro
Dimensione
147.27 kB
Formato
Adobe PDF
|
147.27 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




