To a finitely generated profinite group G, a formal Dirichlet series PG(s) =σn ϵNan(G)/ns is associated, where an(G) =σ|G:H|=nμ(H,G) and μ(H,G) denotes the Möbius function of the lattice of open subgroups of G. Its formal inverse (PG(s))-1 is the probabilistic zeta function of G. When G is prosoluble, every coefficient of (PG(s))-1 is nonnegative. In this paper we discuss the general case and we produce a non-prosoluble finitely generated group with the same property.

Profinite groups in which the probabilistic zeta function has no negative coefficients

Detomi E.;Lucchini A.
2021

Abstract

To a finitely generated profinite group G, a formal Dirichlet series PG(s) =σn ϵNan(G)/ns is associated, where an(G) =σ|G:H|=nμ(H,G) and μ(H,G) denotes the Möbius function of the lattice of open subgroups of G. Its formal inverse (PG(s))-1 is the probabilistic zeta function of G. When G is prosoluble, every coefficient of (PG(s))-1 is nonnegative. In this paper we discuss the general case and we produce a non-prosoluble finitely generated group with the same property.
File in questo prodotto:
File Dimensione Formato  
detomi-lucchini-2020-profinite-groups-in-which-the-probabilistic-zeta-function-has-no-negative-coefficients.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso libero
Dimensione 207.83 kB
Formato Adobe PDF
207.83 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3398060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact