To a finitely generated profinite group G, a formal Dirichlet series PG(s) =σn ϵNan(G)/ns is associated, where an(G) =σ|G:H|=nμ(H,G) and μ(H,G) denotes the Möbius function of the lattice of open subgroups of G. Its formal inverse (PG(s))-1 is the probabilistic zeta function of G. When G is prosoluble, every coefficient of (PG(s))-1 is nonnegative. In this paper we discuss the general case and we produce a non-prosoluble finitely generated group with the same property.
Profinite groups in which the probabilistic zeta function has no negative coefficients
Detomi E.;Lucchini A.
2021
Abstract
To a finitely generated profinite group G, a formal Dirichlet series PG(s) =σn ϵNan(G)/ns is associated, where an(G) =σ|G:H|=nμ(H,G) and μ(H,G) denotes the Möbius function of the lattice of open subgroups of G. Its formal inverse (PG(s))-1 is the probabilistic zeta function of G. When G is prosoluble, every coefficient of (PG(s))-1 is nonnegative. In this paper we discuss the general case and we produce a non-prosoluble finitely generated group with the same property.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
detomi-lucchini-2020-profinite-groups-in-which-the-probabilistic-zeta-function-has-no-negative-coefficients.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso libero
Dimensione
207.83 kB
Formato
Adobe PDF
|
207.83 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.