. In this paper, our concern is to present and solve the problem of pricing oil futures. For this purpose, firstly we suggest a model based on the well-known Schwartz’s model, in which the oil futures price is based on spot price of oil and convenience yield, however, the main difference here is that we have assumed that the former was imposed to some jumps, thus we added a jump term to the model of spot price. In our case, the oil future price model would be a Partial Integral Differential Equation (PIDE). Since, no closed form solution can be suggested for these kind of equations, we desire to solve our model with an appropriate numerical method. Although Finite Differences (FD) or Finite Elements (FE) is a common method for doing so, in this paper, we propose an alternative method based on Radial Basis Functions (RBF).
An RBF approach for oil futures pricing under the jump-diffusion model
Mohammad Karimnejad Esfahani;Stefano De Marchi
2021
Abstract
. In this paper, our concern is to present and solve the problem of pricing oil futures. For this purpose, firstly we suggest a model based on the well-known Schwartz’s model, in which the oil futures price is based on spot price of oil and convenience yield, however, the main difference here is that we have assumed that the former was imposed to some jumps, thus we added a jump term to the model of spot price. In our case, the oil future price model would be a Partial Integral Differential Equation (PIDE). Since, no closed form solution can be suggested for these kind of equations, we desire to solve our model with an appropriate numerical method. Although Finite Differences (FD) or Finite Elements (FE) is a common method for doing so, in this paper, we propose an alternative method based on Radial Basis Functions (RBF).File | Dimensione | Formato | |
---|---|---|---|
JMM_Vol9_Iss1_81-92.pdf
accesso aperto
Descrizione: JMM2021
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
590.48 kB
Formato
Adobe PDF
|
590.48 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.