We study the dynamics and conformation of polymers composed by active monomers. By means of Brownian dynamics simulations we show that, when the direction of the self-propulsion of each monomer is aligned with the backbone, the polymer undergoes a coil-to-globulelike transition, highlighted by a marked change of the scaling exponent of the gyration radius. Concurrently, the diffusion coefficient of the center of mass of the polymer becomes essentially independent of the polymer size for sufficiently long polymers or large magnitudes of the self-propulsion. These effects are reduced when the self-propulsion of the monomers is not bound to be tangent to the backbone of the polymer. Our results, rationalized by a minimal stochastic model, open new routes for activity-controlled polymers and, possibly, for a new generation of polymer-based drug carriers.

Globulelike Conformation and Enhanced Diffusion of Active Polymers

Locatelli E.;
2018

Abstract

We study the dynamics and conformation of polymers composed by active monomers. By means of Brownian dynamics simulations we show that, when the direction of the self-propulsion of each monomer is aligned with the backbone, the polymer undergoes a coil-to-globulelike transition, highlighted by a marked change of the scaling exponent of the gyration radius. Concurrently, the diffusion coefficient of the center of mass of the polymer becomes essentially independent of the polymer size for sufficiently long polymers or large magnitudes of the self-propulsion. These effects are reduced when the self-propulsion of the monomers is not bound to be tangent to the backbone of the polymer. Our results, rationalized by a minimal stochastic model, open new routes for activity-controlled polymers and, possibly, for a new generation of polymer-based drug carriers.
File in questo prodotto:
File Dimensione Formato  
Globulelike Conformation and Enhanced Diffusion of Active Polymers.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Altro
Dimensione 807.09 kB
Formato Adobe PDF
807.09 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3395214
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 106
  • ???jsp.display-item.citation.isi??? 105
  • OpenAlex ND
social impact