Randomness is a fundamental feature of quantum mechanics, which is an invaluable resource for both classical and quantum technologies. Practical quantum random-number generators (QRNGs) usually need to trust their devices, but their security can be jeopardized in the case of imperfections or malicious external actions. In this work, we present a robust implementation of a semi-device-independent QRNG that guarantees both security and fast generation rates. The system works in a prepare-and-measure scenario, where measurement and source are uncharacterized, but a bound on the energy of the prepared states is assumed. Our implementation exploits heterodyne detection, which offers increased generation rate and improved long-term stability compared to alternative measurement strategies. In particular, due to the tomographic properties of heterodyne measurement, we can compensate for fast phase fluctuations via postprocessing, avoiding complex active phase-stabilization systems. As a result, our scheme combines high security and speed with a simple setup featuring only commercial-off-the-shelf components, making it an attractive solution in many practical scenarios.
Semi-Device-Independent Heterodyne-Based Quantum Random-Number Generator
Avesani M.
;Tebyanian H.;Villoresi P.;Vallone G.
2021
Abstract
Randomness is a fundamental feature of quantum mechanics, which is an invaluable resource for both classical and quantum technologies. Practical quantum random-number generators (QRNGs) usually need to trust their devices, but their security can be jeopardized in the case of imperfections or malicious external actions. In this work, we present a robust implementation of a semi-device-independent QRNG that guarantees both security and fast generation rates. The system works in a prepare-and-measure scenario, where measurement and source are uncharacterized, but a bound on the energy of the prepared states is assumed. Our implementation exploits heterodyne detection, which offers increased generation rate and improved long-term stability compared to alternative measurement strategies. In particular, due to the tomographic properties of heterodyne measurement, we can compensate for fast phase fluctuations via postprocessing, avoiding complex active phase-stabilization systems. As a result, our scheme combines high security and speed with a simple setup featuring only commercial-off-the-shelf components, making it an attractive solution in many practical scenarios.File | Dimensione | Formato | |
---|---|---|---|
Avesani PhysRevApplied.15.034034.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.