Background: The recent report of SARS-CoV-2 presence in semen samples of six patients, including two subjects who were recovering from the clinical disease, re-opened the discussion on possible male genital tract infection, virus shedding in semen, sexual transmission and safety of fertility treatments during the pandemic period. Objectives: To explore current data and hypothesis on the possible sites of SARS-CoV-2 infection in the male reproduction system. Materials and methods: We reviewed the current literature to describe: a) the evidences on angiotensin-converting enzyme 2 (AC2E) and transmembrane serine protease 2 (TMPRSS2) expression in the testes, accessory glands (including prostate) and the urinary tract; b) other coronaviruses’ (SARS and MERS) ability to infect these sites. Results: The co-expression of both ACE2 and TMPRSS2 genes was reported in spermatogonial stem cells, elongated spermatids, in at least a small percentage of prostate hillock cells and in renal tubular cells. Testicular damage was described in autopsies of SARS patients, without evidence of the virus in the specimens. Prostate is a known infection site for MERS-CoV. SARS-CoV-2 was detected in urines. Discussion: There are still al lot of open questions on the effects of SARS-CoV-2 infection on the male reproductive tract. The presence of receptors is not a proof that the testis provides a site for viral infection and it is still unknown if SARS-CoV-2 is capable to pass the blood-testis barrier. The possibility of a prostate involvement has not been investigated yet: we have no data, but theoretically it cannot be excluded. Moreover, the RNA detected in semen could have been just a residual of urinary shedding. Conclusion: Opening our prospective beyond the testis could be the key to better understand the possibility of a semen-related viral transmission as well as COVID19 short and long-term effects on male reproductive function.

SARS-CoV-2 in the semen: Where does it come from?

Garolla A.;Foresta C.
2021

Abstract

Background: The recent report of SARS-CoV-2 presence in semen samples of six patients, including two subjects who were recovering from the clinical disease, re-opened the discussion on possible male genital tract infection, virus shedding in semen, sexual transmission and safety of fertility treatments during the pandemic period. Objectives: To explore current data and hypothesis on the possible sites of SARS-CoV-2 infection in the male reproduction system. Materials and methods: We reviewed the current literature to describe: a) the evidences on angiotensin-converting enzyme 2 (AC2E) and transmembrane serine protease 2 (TMPRSS2) expression in the testes, accessory glands (including prostate) and the urinary tract; b) other coronaviruses’ (SARS and MERS) ability to infect these sites. Results: The co-expression of both ACE2 and TMPRSS2 genes was reported in spermatogonial stem cells, elongated spermatids, in at least a small percentage of prostate hillock cells and in renal tubular cells. Testicular damage was described in autopsies of SARS patients, without evidence of the virus in the specimens. Prostate is a known infection site for MERS-CoV. SARS-CoV-2 was detected in urines. Discussion: There are still al lot of open questions on the effects of SARS-CoV-2 infection on the male reproductive tract. The presence of receptors is not a proof that the testis provides a site for viral infection and it is still unknown if SARS-CoV-2 is capable to pass the blood-testis barrier. The possibility of a prostate involvement has not been investigated yet: we have no data, but theoretically it cannot be excluded. Moreover, the RNA detected in semen could have been just a residual of urinary shedding. Conclusion: Opening our prospective beyond the testis could be the key to better understand the possibility of a semen-related viral transmission as well as COVID19 short and long-term effects on male reproductive function.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3391673
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
  • OpenAlex ND
social impact