The paper presents a fully self-implementable algorithm that has demonstrated to be an effective tool for power education at the University of Padova-Department of Industrial Engineering. It deals with the small signal analysis of the electromechanical transients of a multimachine system. The algorithm allows analytically building both the state matrix and the input matrix. Moreover, by exploiting the matrix exponential, the angular frequency deviations of synchronous generators can be computed and plotted so to help students to evaluate transient stability. Besides the full exposition of the algorithm, the paper presents a comparison between a self-implemented linearized dynamic in Matlab environment and the dynamic simulation obtained by the commercial software DIgSILENT PowerFactory.

An Original Educational Algorithm Assessing the Behaviours of Angular Frequency Deviations of a Multimachine System in Small Signal Analysis

Benato R.
;
Gardan G.;Sanniti F.;
2021

Abstract

The paper presents a fully self-implementable algorithm that has demonstrated to be an effective tool for power education at the University of Padova-Department of Industrial Engineering. It deals with the small signal analysis of the electromechanical transients of a multimachine system. The algorithm allows analytically building both the state matrix and the input matrix. Moreover, by exploiting the matrix exponential, the angular frequency deviations of synchronous generators can be computed and plotted so to help students to evaluate transient stability. Besides the full exposition of the algorithm, the paper presents a comparison between a self-implemented linearized dynamic in Matlab environment and the dynamic simulation obtained by the commercial software DIgSILENT PowerFactory.
2021
File in questo prodotto:
File Dimensione Formato  
An_Original_Educational_Algorithm_Assessing_the_Behaviours_of_Angular_Frequency_Deviations_of_a_Multimachine_System_in_Small_Signal_Analysis.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3391670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact