We investigate strong maximum (and minimum) principles for fully nonlinear second-order equations on Riemannian manifolds that are non-totally degenerate and satisfy appropriate scaling conditions. Our results apply to a large class of nonlinear operators, among which Pucci’s extremal operators, some singular operators such as those modeled on the p- and ∞-Laplacian, and mean curvature-type problems. As a byproduct, we establish new strong comparison principles for some second-order uniformly elliptic problems when the manifold has nonnegative sectional curvature.

A Note on the Strong Maximum Principle for Fully Nonlinear Equations on Riemannian Manifolds

Goffi A.
;
2021

Abstract

We investigate strong maximum (and minimum) principles for fully nonlinear second-order equations on Riemannian manifolds that are non-totally degenerate and satisfy appropriate scaling conditions. Our results apply to a large class of nonlinear operators, among which Pucci’s extremal operators, some singular operators such as those modeled on the p- and ∞-Laplacian, and mean curvature-type problems. As a byproduct, we establish new strong comparison principles for some second-order uniformly elliptic problems when the manifold has nonnegative sectional curvature.
File in questo prodotto:
File Dimensione Formato  
PMaxJ_Geom_Anal.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Preprint (submitted version)
Licenza: Creative commons
Dimensione 562.1 kB
Formato Adobe PDF
562.1 kB Adobe PDF Visualizza/Apri
Goffi-Pediconi2021_Article_ANoteOnTheStrongMaximumPrincip.pdf

accesso aperto

Descrizione: Open access funding provided by Università degli Studi di Padova within the CRUI-CARE Agreement
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 423.27 kB
Formato Adobe PDF
423.27 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3391430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact