We define the double ramification hierarchy associated to an F-cohomological field theory and use this construction to prove that the principal hierarchy of any semisimple (homogeneous) flat F-manifold possesses a (homogeneous) integrable dispersive deformation at all orders in the dispersion parameter. The proof is based on the reconstruction of an F-CohFT starting from a semisimple flat F-manifold and additional data in genus 1, obtained in our previous work. Our construction of these dispersive deformations is quite explicit and we compute several examples. In particular, we provide a complete classification of rank 1 hierarchies of DR type at the order 9 approximation in the dispersion parameter and of homogeneous DR hierarchies associated with all 2-dimensional homogeneous flat F-manifolds at genus 1 approximation.

Flat F-Manifolds, F-CohFTs, and Integrable Hierarchies

Lorenzoni P.;Rossi P.
2021

Abstract

We define the double ramification hierarchy associated to an F-cohomological field theory and use this construction to prove that the principal hierarchy of any semisimple (homogeneous) flat F-manifold possesses a (homogeneous) integrable dispersive deformation at all orders in the dispersion parameter. The proof is based on the reconstruction of an F-CohFT starting from a semisimple flat F-manifold and additional data in genus 1, obtained in our previous work. Our construction of these dispersive deformations is quite explicit and we compute several examples. In particular, we provide a complete classification of rank 1 hierarchies of DR type at the order 9 approximation in the dispersion parameter and of homogeneous DR hierarchies associated with all 2-dimensional homogeneous flat F-manifolds at genus 1 approximation.
File in questo prodotto:
File Dimensione Formato  
Arsie2021_Article_FlatF-ManifoldsF-CohFTsAndInte.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 579 kB
Formato Adobe PDF
579 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3391315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact