A natural single crystal of amethyst was investigated by means of continuous-wave and pulsed Electron Paramagnetic Resonance (EPR), with the aim of structurally characterizing the substitutional S2 Fe(III):H+ centre. In this centre, Fe(III) replaces Si(IV) in the tetrahedral site, whereas H+ is coupled to Fe(III) to maintain the charge balance. The spectroscopic investigations, mainly the interpretation of the Electron Spin Echo Envelope Modulation, allowed a detailed localisation of the proton to be obtained. H+ occurs in the channels crossing the crystal parallel to the crystallographic c axis, in a largely eccentric position. The Fe(III)-H+ distance, evaluated in 2.70 Å, is found associated with a non-negligible isotropic hyperfine coupling, which can be linked to the relative stability of the S2 centre in natural amethyst.
Characterisation of the Fe(III):H+ Defect Centre in Natural Amethyst
Zoleo A.;
2020
Abstract
A natural single crystal of amethyst was investigated by means of continuous-wave and pulsed Electron Paramagnetic Resonance (EPR), with the aim of structurally characterizing the substitutional S2 Fe(III):H+ centre. In this centre, Fe(III) replaces Si(IV) in the tetrahedral site, whereas H+ is coupled to Fe(III) to maintain the charge balance. The spectroscopic investigations, mainly the interpretation of the Electron Spin Echo Envelope Modulation, allowed a detailed localisation of the proton to be obtained. H+ occurs in the channels crossing the crystal parallel to the crystallographic c axis, in a largely eccentric position. The Fe(III)-H+ distance, evaluated in 2.70 Å, is found associated with a non-negligible isotropic hyperfine coupling, which can be linked to the relative stability of the S2 centre in natural amethyst.File | Dimensione | Formato | |
---|---|---|---|
DiBenedetto2020_Article_CharacterisationOfTheFeIIIHDef.pdf
accesso aperto
Descrizione: Versione Open Access dell'articolo
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.