By means of Mn-Cu transmetalation, we incorporated Mn atoms in an array of TCNQ (7,7,8,8-tetracyanoquinodimethane) grown on Cu(100), forming a long range ordered and commensurate metal–organic coordination network (MOCN). Preliminary Sn alloying of the Cu(100) surface allowed us to control the degree of substrate reactivity, thus preventing the chemical interaction of the Mn-TCNQ MOCN with the substrate. Mn2+ ions are stabilized in an artificial tetra-pyrrolic coordination, which mimics the macrocyle configuration of Mn-phthalocyanines/porphyrins. X-ray absorption spectroscopy at the Mn L2,3-edge indicates that the Mn ions are in a high-spin state (S = 5/2), in agreement with DFT + U calculations which also shows that the electronic structure of this Mn-TCNQ MOCN is very similar to that of the corresponding unsupported MOCN.
Stabilization of high-spin Mn ions in tetra-pyrrolic configuration on copper
Carlotto S.Investigation
;Casarin M.Writing – Review & Editing
;
2021
Abstract
By means of Mn-Cu transmetalation, we incorporated Mn atoms in an array of TCNQ (7,7,8,8-tetracyanoquinodimethane) grown on Cu(100), forming a long range ordered and commensurate metal–organic coordination network (MOCN). Preliminary Sn alloying of the Cu(100) surface allowed us to control the degree of substrate reactivity, thus preventing the chemical interaction of the Mn-TCNQ MOCN with the substrate. Mn2+ ions are stabilized in an artificial tetra-pyrrolic coordination, which mimics the macrocyle configuration of Mn-phthalocyanines/porphyrins. X-ray absorption spectroscopy at the Mn L2,3-edge indicates that the Mn ions are in a high-spin state (S = 5/2), in agreement with DFT + U calculations which also shows that the electronic structure of this Mn-TCNQ MOCN is very similar to that of the corresponding unsupported MOCN.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0169433221003834-main.pdf
Accesso riservato
Descrizione: articolo principale
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
3.34 MB
Formato
Adobe PDF
|
3.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2991587_MnTetraPyrrol_AppSurfSci_2021-Post_print.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Altro
Dimensione
3.73 MB
Formato
Adobe PDF
|
3.73 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.