We prove that a pair of heterodimensional cycles can be born at the bifurcations of a pair of Shilnikov loops (homoclinic loops to a saddle-focus equilibrium) having a one-dimensional unstable manifold in a volume-hyperbolic flow with a ℤ2 symmetry. We also show that these heterodimensional cycles can belong to a chain-transitive attractor of the system along with persistent homoclinic tangency.

Existence of heterodimensional cycles near shilnikov loops in systems with A Z2 symmetry

Li D.;
2017

Abstract

We prove that a pair of heterodimensional cycles can be born at the bifurcations of a pair of Shilnikov loops (homoclinic loops to a saddle-focus equilibrium) having a one-dimensional unstable manifold in a volume-hyperbolic flow with a ℤ2 symmetry. We also show that these heterodimensional cycles can belong to a chain-transitive attractor of the system along with persistent homoclinic tangency.
File in questo prodotto:
File Dimensione Formato  
1512.01280.pdf

accesso aperto

Descrizione: main article
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 716.37 kB
Formato Adobe PDF
716.37 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3390549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact