The electronic state manifolds of carotenoids and their relaxation dynamics are the object of intense investigation because most of the subtle details regulating their photophysics are still unknown. In order to contribute to this quest, here, we present a solvent-dependent 2D Electronic Spectroscopy (2DES) characterization of fucoxanthin, a carbonyl carotenoid involved in the light-harvesting process of brown algae. The 2DES technique allows probing its ultrafast relaxation dynamics in the first 1000 fs after photoexcitation with a 10 fs time resolution. The obtained results help shed light on the dynamics of the first electronic state manifold and, in particular, on an intramolecular charge-transfer state (ICT), whose photophysical properties are particularly elusive given its (almost) dark nature.

Solvent-Dependent Characterization of Fucoxanthin through 2D Electronic Spectroscopy Reveals New Details on the Intramolecular Charge-Transfer State Dynamics

Marcolin, Giampaolo;Collini, Elisabetta
2021

Abstract

The electronic state manifolds of carotenoids and their relaxation dynamics are the object of intense investigation because most of the subtle details regulating their photophysics are still unknown. In order to contribute to this quest, here, we present a solvent-dependent 2D Electronic Spectroscopy (2DES) characterization of fucoxanthin, a carbonyl carotenoid involved in the light-harvesting process of brown algae. The 2DES technique allows probing its ultrafast relaxation dynamics in the first 1000 fs after photoexcitation with a 10 fs time resolution. The obtained results help shed light on the dynamics of the first electronic state manifold and, in particular, on an intramolecular charge-transfer state (ICT), whose photophysical properties are particularly elusive given its (almost) dark nature.
File in questo prodotto:
File Dimensione Formato  
JPCLett12(2021)4833.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3390502
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact