Propaganda is a mechanism to influence public opinion, which is inherently present in extremely biased and fake news. Here, we propose a model to automatically assess the level of propagandistic content in an article based on different representations, from writing style and readability level to the presence of certain keywords. We experiment thoroughly with different variations of such a model on a new publicly available corpus, and we show that character n-grams and other style features outperform existing alternatives to identify propaganda based on word n-grams. Unlike previous work, we make sure that the test data comes from news sources that were unseen on training, thus penalizing learning algorithms that model the news sources used at training time as opposed to solving the actual task. We integrate our supervised model in a public website, which organizes recent articles covering the same event on the basis of their propagandistic contents. This allows users to quickly explore different perspectives of the same story, and it also enables investigative journalists to dig further into how different media use stories and propaganda to pursue their agenda.

Proppy: Organizing the news based on their propagandistic content

Da San Martino G.;
2019

Abstract

Propaganda is a mechanism to influence public opinion, which is inherently present in extremely biased and fake news. Here, we propose a model to automatically assess the level of propagandistic content in an article based on different representations, from writing style and readability level to the presence of certain keywords. We experiment thoroughly with different variations of such a model on a new publicly available corpus, and we show that character n-grams and other style features outperform existing alternatives to identify propaganda based on word n-grams. Unlike previous work, we make sure that the test data comes from news sources that were unseen on training, thus penalizing learning algorithms that model the news sources used at training time as opposed to solving the actual task. We integrate our supervised model in a public website, which organizes recent articles covering the same event on the basis of their propagandistic contents. This allows users to quickly explore different perspectives of the same story, and it also enables investigative journalists to dig further into how different media use stories and propaganda to pursue their agenda.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0306457318306058-main.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3390344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 133
  • ???jsp.display-item.citation.isi??? 63
  • OpenAlex ND
social impact