Articular cartilage damage is a primary feature of osteoarthritis and other inflammatory joint diseases (i.e., rheumatoid arthritis). Repairing articular cartilage is highly challenging due to its avascular/aneural nature and low cellularity. To induce functional neocartilage formation, the tissue substitute must have mechanical properties which can adapt well to the loading conditions of the joint. Among the various biomaterials which may function as cartilage replacements, polyvinyl alcohol (PVA) hydrogels stand out for their high biocompatibility and tunable mechanical features. This review article describes and discusses the enrichment of PVA with natural materials (i.e., collagen, hyaluronic acid, hydroxyapatite, chitosan, alginate, extracellular matrix) ± synthetic additives (i.e., polyacrylic acid, poly-lactic-co-glycolic acid, poly(ethylene glycol) diacrylate, graphene oxide, bioactive glass) to produce cartilage substitutes with enhanced mechanical performance. PVA-based hybrid scaffolds have been investigated mainly by compression, tensile, friction, stress relaxation and creep tests, demonstrating increased stiffness and friction properties, and with cartilage-like viscoelastic behavior. In vitro and in vivo biocompatibility studies revealed positive outcomes but also many gaps yet to be addressed. Thus, recommendations for future research are proposed in order to prompt further progress in the fabrication of PVA-based hybrid scaffolds which increasingly match the biological and mechanical properties of native cartilage.

Enhanced biomechanical properties of polyvinyl alcohol-based hybrid scaffolds for cartilage tissue engineering

Barbon S.;Contran M.;Stocco E.;Todros S.;Macchi V.;De Caro R.;Porzionato A.
2021

Abstract

Articular cartilage damage is a primary feature of osteoarthritis and other inflammatory joint diseases (i.e., rheumatoid arthritis). Repairing articular cartilage is highly challenging due to its avascular/aneural nature and low cellularity. To induce functional neocartilage formation, the tissue substitute must have mechanical properties which can adapt well to the loading conditions of the joint. Among the various biomaterials which may function as cartilage replacements, polyvinyl alcohol (PVA) hydrogels stand out for their high biocompatibility and tunable mechanical features. This review article describes and discusses the enrichment of PVA with natural materials (i.e., collagen, hyaluronic acid, hydroxyapatite, chitosan, alginate, extracellular matrix) ± synthetic additives (i.e., polyacrylic acid, poly-lactic-co-glycolic acid, poly(ethylene glycol) diacrylate, graphene oxide, bioactive glass) to produce cartilage substitutes with enhanced mechanical performance. PVA-based hybrid scaffolds have been investigated mainly by compression, tensile, friction, stress relaxation and creep tests, demonstrating increased stiffness and friction properties, and with cartilage-like viscoelastic behavior. In vitro and in vivo biocompatibility studies revealed positive outcomes but also many gaps yet to be addressed. Thus, recommendations for future research are proposed in order to prompt further progress in the fabrication of PVA-based hybrid scaffolds which increasingly match the biological and mechanical properties of native cartilage.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3390296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
  • OpenAlex ND
social impact