The recent literature has intensively studied two classes of nonlocal variational problems, namely the ones related to the minimisation of energy functionals that act on functions in suitable Sobolev-Gagliardo spaces, and the ones related to the minimisation of fractional perimeters that act on measurable sets of the Euclidean space. In this article, we relate these two types of variational problems. Specifically, we investigate the connection between the nonlocal minimal surfaces and the minimisers of the W s;1-seminorm. In particular, we show that a function is a minimiser for the fractional seminorm if and only if its level sets are minimisers for the fractional perimeter, and that the characteristic function of a nonlocal minimal surface is a minimiser for the fractional seminorm; we also provide an existence result for minimisers of the fractional seminorm, an explicit non-uniqueness example for nonlocal minimal surfaces, and a Yin-Yang result describing the full and void patterns of nonlocal minimal surfaces

Minimisers of a fractional seminorm and nonlocal minimal surfaces

Lombardini L.;
2020

Abstract

The recent literature has intensively studied two classes of nonlocal variational problems, namely the ones related to the minimisation of energy functionals that act on functions in suitable Sobolev-Gagliardo spaces, and the ones related to the minimisation of fractional perimeters that act on measurable sets of the Euclidean space. In this article, we relate these two types of variational problems. Specifically, we investigate the connection between the nonlocal minimal surfaces and the minimisers of the W s;1-seminorm. In particular, we show that a function is a minimiser for the fractional seminorm if and only if its level sets are minimisers for the fractional perimeter, and that the characteristic function of a nonlocal minimal surface is a minimiser for the fractional seminorm; we also provide an existence result for minimisers of the fractional seminorm, an explicit non-uniqueness example for nonlocal minimal surfaces, and a Yin-Yang result describing the full and void patterns of nonlocal minimal surfaces
File in questo prodotto:
File Dimensione Formato  
1fraz_rev_arxiv.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 559.67 kB
Formato Adobe PDF
559.67 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3389903
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact