Alkali-activated calcined clays are promising candidates for playing a prominent role in the future construction industry. These binders may achieve excellent mechanical performance, but one issue deserving attention is the proneness to plastic shrinkage and surface cracking. Tackling this issue requires the deployment of laboratory techniques that allow shrinkage-inducing mechanisms to be quantitatively assessed. Here, we demonstrate that time-lapse X-ray imaging can be used to quantify shrinkage immediately after mixing, when the binder is still in its fresh state, with excellent time and space resolution. The numeric quantification of strain is complemented by the real time visual inspection of the displacing sample interface and of the bleed aqueous solution layer that may form. Implementation of this method to a set of alkali-activated cement pastes, prepared by combining calcined clays having different mineralogical composition with sodium silicate activating solutions having different SiO 2/Na 2O ratios, suggests that two main mechanisms control the early dimensional stability of alkali-activated calcined clays. These mechanisms are: (a) volumetric contraction occurring in response to capillary stress arising from water evaporation and (b) segregation by particle settling, favoured in the water-saturated regime.
Assessing the dimensional stability of alkali-activated calcined clays in the fresh state: a time-lapse X-ray imaging approach
Valentini L.;Mascarin L.
2021
Abstract
Alkali-activated calcined clays are promising candidates for playing a prominent role in the future construction industry. These binders may achieve excellent mechanical performance, but one issue deserving attention is the proneness to plastic shrinkage and surface cracking. Tackling this issue requires the deployment of laboratory techniques that allow shrinkage-inducing mechanisms to be quantitatively assessed. Here, we demonstrate that time-lapse X-ray imaging can be used to quantify shrinkage immediately after mixing, when the binder is still in its fresh state, with excellent time and space resolution. The numeric quantification of strain is complemented by the real time visual inspection of the displacing sample interface and of the bleed aqueous solution layer that may form. Implementation of this method to a set of alkali-activated cement pastes, prepared by combining calcined clays having different mineralogical composition with sodium silicate activating solutions having different SiO 2/Na 2O ratios, suggests that two main mechanisms control the early dimensional stability of alkali-activated calcined clays. These mechanisms are: (a) volumetric contraction occurring in response to capillary stress arising from water evaporation and (b) segregation by particle settling, favoured in the water-saturated regime.File | Dimensione | Formato | |
---|---|---|---|
Valentini-Mascarin2021_Article_AssessingTheDimensionalStabili.pdf
accesso aperto
Descrizione: Open access funding provided by Università degli Studi di Padova within the CRUI-CARE Agreement
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.