Based on femtosecond time-resolved spectroscopy and single photon timing experiments, intramolecular photoinduced charge transfer has been investigated in two systems containing a peryleneimide chromophore (P) and thiophene (T) groups. The first compound bearing a single thiophene ring (PT1) is used as model and shows a behavior similar to P, studied previously, while in the compound with two thiophene rings attached (PT2) electron transfer from the thiophene donor to the peryleneimide acceptor is observed in benzonitrile. Femtosecond fluorescence upconversion and femtosecond transient absorption experiments in benzonitrile indicate that this ion-pair state formation occurs in 19 ps. This ion-pair state then decays with two time constants of 1400 and 820 ps, probably corresponding to different conformations of the thiophene rings. © 2005 The Royal Society of Chemistry and Owner Societies.
Photophysical study of photoinduced electron transfer in a bis-thiophene substituted peryleneimide
Pilot R.;De Feyter S.;
2005
Abstract
Based on femtosecond time-resolved spectroscopy and single photon timing experiments, intramolecular photoinduced charge transfer has been investigated in two systems containing a peryleneimide chromophore (P) and thiophene (T) groups. The first compound bearing a single thiophene ring (PT1) is used as model and shows a behavior similar to P, studied previously, while in the compound with two thiophene rings attached (PT2) electron transfer from the thiophene donor to the peryleneimide acceptor is observed in benzonitrile. Femtosecond fluorescence upconversion and femtosecond transient absorption experiments in benzonitrile indicate that this ion-pair state formation occurs in 19 ps. This ion-pair state then decays with two time constants of 1400 and 820 ps, probably corresponding to different conformations of the thiophene rings. © 2005 The Royal Society of Chemistry and Owner Societies.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




