This paper reports a semi-automated workflow for detection and quantification of forest damage from windthrow in an Alpine region, in particular from the Vaia storm in October 2018. A web-GIS platform allows to select the damaged area by drawing polygons; several vegetation indices (VIs) are automatically calculated using remote sensing data (Sentinel-2A) and tested to identify the more suitable ones for quantifying forest damage using cross-validation with ground-truth data. Results show that the mean value of NDVI and NDMI decreased in the damaged areas, and have a strong negative correlation with severity. RGI has an opposite behavior in contrast with NDVI and NDMI, as it highlights the red component of the land surface. In all cases, variance of the VI in-creases after the event between 0.03 and 0.15. Understorey not damaged from the windthrow, if consisting of 40% or more of the total cover in the area, undermines significantly the sensibility of the VIs to detecting and predictin...
Responding to Large-Scale Forest Damage in an Alpine Environment with Remote Sensing, Machine Learning, and Web-GIS
Piragnolo, Marco;Pirotti, Francesco
;Zanrosso, Carlo;Lingua, Emanuele;Grigolato, Stefano
2021
Abstract
This paper reports a semi-automated workflow for detection and quantification of forest damage from windthrow in an Alpine region, in particular from the Vaia storm in October 2018. A web-GIS platform allows to select the damaged area by drawing polygons; several vegetation indices (VIs) are automatically calculated using remote sensing data (Sentinel-2A) and tested to identify the more suitable ones for quantifying forest damage using cross-validation with ground-truth data. Results show that the mean value of NDVI and NDMI decreased in the damaged areas, and have a strong negative correlation with severity. RGI has an opposite behavior in contrast with NDVI and NDMI, as it highlights the red component of the land surface. In all cases, variance of the VI in-creases after the event between 0.03 and 0.15. Understorey not damaged from the windthrow, if consisting of 40% or more of the total cover in the area, undermines significantly the sensibility of the VIs to detecting and predictin...File | Dimensione | Formato | |
---|---|---|---|
remotesensing-13-01541-v2.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
12.21 MB
Formato
Adobe PDF
|
12.21 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.