This paper presents a sizing method with sensitivity analysis for battery-supercapacitor hybrid energy storage systems (HESSs) to minimize vehicle-lifetime costs. An optimization framework is proposed to solve joint energy management-sizing optimization. Sensitivity analysis is performed using eight parameters of the vehicle, HESS system and components as sensitive factors. We explain why HESS sizing is sensitive to each factor by discussing the change of optimal HESS size and costs with varying factor values. The relative importance of each factor in practical engineering is quantified and compared. Results show that battery degradation accounts for around 89% of HESS costs; among eight sensitive factors, vehicle driving range has the biggest impact on HESS costs with a calculated impact degree of 1.243. By analyzing comprehensive factors in optimization of HESS sizing, it is expected to provide general a sizing guide applicable to various application scenarios of HESS in electric vehicles.
Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles
Lot R.;
2021
Abstract
This paper presents a sizing method with sensitivity analysis for battery-supercapacitor hybrid energy storage systems (HESSs) to minimize vehicle-lifetime costs. An optimization framework is proposed to solve joint energy management-sizing optimization. Sensitivity analysis is performed using eight parameters of the vehicle, HESS system and components as sensitive factors. We explain why HESS sizing is sensitive to each factor by discussing the change of optimal HESS size and costs with varying factor values. The relative importance of each factor in practical engineering is quantified and compared. Results show that battery degradation accounts for around 89% of HESS costs; among eight sensitive factors, vehicle driving range has the biggest impact on HESS costs with a calculated impact degree of 1.243. By analyzing comprehensive factors in optimization of HESS sizing, it is expected to provide general a sizing guide applicable to various application scenarios of HESS in electric vehicles.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0360544221001006-main.pdf
Accesso riservato
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
4.12 MB
Formato
Adobe PDF
|
4.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Final_Draft(1).pdf
accesso aperto
Tipologia:
Postprint (accepted version)
Licenza:
Creative commons
Dimensione
2.33 MB
Formato
Adobe PDF
|
2.33 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.