A number of synthetically useful transformations have been developed to generate novel 5′-peptidyl nucleoside monophosphate analogues that incorporate sensitive phosphoaminal, -hemiaminal or -hemithioaminal functionalities. The strategies adopted entailed the coupling between dipeptides, which enclose a reactive Cα-functionalized glycine residue and phosphate or phosphorothioate moieties. These developments led to potentially powerful and general methodologies for the preparation of α-phosphorylated pseudopeptides as well as nucleoside monophosphate mimics. The resulting conjugates are of interest for a variety of important applications, which range from drug development to synthetic biology, as pronucleotides or artificial building blocks for the enzymatic synthesis of xenobiotic information systems. The potential of all dipeptide-TMP conjugates as pyrophosphate mimics in the DNA polymerization reaction was tested, and the influence of the nature of the linker was evaluated by in vitro chain elongation assay in the presence of wild-type microbial DNA polymerases.

Syntheses of 5′-Nucleoside Monophosphate Derivatives with Unique Aminal, Hemiaminal, and Hemithioaminal Functionalities: A New Class of 5′-Peptidyl Nucleotides

Groaz E.;
2016

Abstract

A number of synthetically useful transformations have been developed to generate novel 5′-peptidyl nucleoside monophosphate analogues that incorporate sensitive phosphoaminal, -hemiaminal or -hemithioaminal functionalities. The strategies adopted entailed the coupling between dipeptides, which enclose a reactive Cα-functionalized glycine residue and phosphate or phosphorothioate moieties. These developments led to potentially powerful and general methodologies for the preparation of α-phosphorylated pseudopeptides as well as nucleoside monophosphate mimics. The resulting conjugates are of interest for a variety of important applications, which range from drug development to synthetic biology, as pronucleotides or artificial building blocks for the enzymatic synthesis of xenobiotic information systems. The potential of all dipeptide-TMP conjugates as pyrophosphate mimics in the DNA polymerization reaction was tested, and the influence of the nature of the linker was evaluated by in vitro chain elongation assay in the presence of wild-type microbial DNA polymerases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3387659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact