Solar Orbiter is a solar mission that will approach the Sun down to a minimum perihelion of 0.28 AU and will increase its orbit inclination with respect to the ecliptic up to a maximum angle of 34 deg. For imagers aboard Solar Orbiter there will be three 10-days remote sensing windows per orbit. Observations shall be carefully planned at least 6 months in advance. The Multi Instrument Sequence Organizer (MISO) is a web based platform developed by the SPICE group and made available to support Solar Orbiter instruments teams in planning observations by assembling Mission Database sequences. Metis is the UV and visible light coronagraph aboard Solar Orbiter. Metis is a complex instrument characterized by a rich variety of observing modes, which required a careful commissioning activity and will need support for potential maintenance operations throughout the mission. In order to support commissioning and maintenance activities, the Metis team developed a PDOR (Payload Direct Operation Request) and MDOR (Memory Direct Operation Request) module integrated in MISO and made available to all Solar Orbiter instruments. An effort was made in order to interpret the coding philosophy of the main project and to make the additional module as homogeneous as possible both to the web interface and to the algorithm logic, while integrating characteristics which are peculiar to PDORs and MDORs. An user friendly web based interface allows the operator to build the operation request and to successively modify or integrate it with further or alternative information. In the present work we describe the PDOR/MDOR module for MISO by addressing its logic and main characteristics.

The MDOR/PDOR on-line module for MISO, the planning software of Solar Orbiter instruments

Casini C.;Naletto G.;Nicolosi P.;
2020

Abstract

Solar Orbiter is a solar mission that will approach the Sun down to a minimum perihelion of 0.28 AU and will increase its orbit inclination with respect to the ecliptic up to a maximum angle of 34 deg. For imagers aboard Solar Orbiter there will be three 10-days remote sensing windows per orbit. Observations shall be carefully planned at least 6 months in advance. The Multi Instrument Sequence Organizer (MISO) is a web based platform developed by the SPICE group and made available to support Solar Orbiter instruments teams in planning observations by assembling Mission Database sequences. Metis is the UV and visible light coronagraph aboard Solar Orbiter. Metis is a complex instrument characterized by a rich variety of observing modes, which required a careful commissioning activity and will need support for potential maintenance operations throughout the mission. In order to support commissioning and maintenance activities, the Metis team developed a PDOR (Payload Direct Operation Request) and MDOR (Memory Direct Operation Request) module integrated in MISO and made available to all Solar Orbiter instruments. An effort was made in order to interpret the coding philosophy of the main project and to make the additional module as homogeneous as possible both to the web interface and to the algorithm logic, while integrating characteristics which are peculiar to PDORs and MDORs. An user friendly web based interface allows the operator to build the operation request and to successively modify or integrate it with further or alternative information. In the present work we describe the PDOR/MDOR module for MISO by addressing its logic and main characteristics.
2020
Proceedings of SPIE - The International Society for Optical Engineering
Software and Cyberinfrastructure for Astronomy VI 2020
9781510636910
9781510636927
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3387486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact