Relations between the various formulations of nonlinear p-form electrodynamics with conformal-invariant weak-field and strong-field limits are clarified, with a focus on duality invariant (2n − 1)-form electrodynamics and chiral 2n-form electrodynamics in Minkowski spacetime of dimension D = 4n and D = 4n + 2, respectively. We exhibit a new family of chiral 2-form electrodynamics in D = 6 for which these limits exhaust the possibilities for conformal invariance; the weak-field limit is related by dimensional reduction to the recently discovered ModMax generalisation of Maxwell’s equations. For n > 1 we show that the chiral ‘strong-field’ 2n-form electrodynamics is related by dimensional reduction to a new Sl(2; ℝ)-duality invariant theory of (2n − 1)-form electrodynamics.
On p-form gauge theories and their conformal limits
Bandos I.Membro del Collaboration Group
;Lechner K.Membro del Collaboration Group
;Sorokin D.Membro del Collaboration Group
;
2021
Abstract
Relations between the various formulations of nonlinear p-form electrodynamics with conformal-invariant weak-field and strong-field limits are clarified, with a focus on duality invariant (2n − 1)-form electrodynamics and chiral 2n-form electrodynamics in Minkowski spacetime of dimension D = 4n and D = 4n + 2, respectively. We exhibit a new family of chiral 2-form electrodynamics in D = 6 for which these limits exhaust the possibilities for conformal invariance; the weak-field limit is related by dimensional reduction to the recently discovered ModMax generalisation of Maxwell’s equations. For n > 1 we show that the chiral ‘strong-field’ 2n-form electrodynamics is related by dimensional reduction to a new Sl(2; ℝ)-duality invariant theory of (2n − 1)-form electrodynamics.File | Dimensione | Formato | |
---|---|---|---|
on pform.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
607.93 kB
Formato
Adobe PDF
|
607.93 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.