Neurons containing neuropeptide S (NPS) and orexins are activated during stress. Previously, we reported that orexins released during stress, via orexin OX1 receptors (OX1Rs), contribute to the reinstatement of cocaine seeking through endo-cannabinoid/CB1 receptor (CB1R)-mediated dopaminergic disinhibition in the ventral tegmental area (VTA). Here, we further demonstrated that NPS released during stress is an up-stream activator of this orexin-endocannabinoid cascade in the VTA, leading to the reinstatement of cocaine seeking. Mice were trained to acquire cocaine conditioned place preference (CPP) by context-pairing cocaine injections followed by the extinction training with context-pairing saline injections. Interestingly, the extinguished cocaine CPP in mice was significantly reinstated by intra-cerebroventricular injection (i.c.v.) of NPS (1 nmol) in a manner prevented by intraperitoneal injection (i.p.) of SHA68 (50 mg/kg), an NPS receptor antagonist. This NPS-induced cocaine reinstatement was prevented by either i.p. or intra-VTA microinjection (i.vta.) of SB-334867 (15 mg/kg, i.p. or 15 nmol, i.vta.) and AM 251 (1.1 mg/kg, i.p. or 30 nmol, i.vta.), antagonists of OX1Rs and CB1Rs, respectively. Besides, NPS (1 nmol, i.c.v.) increased the number of c-Fos-containing orexin neurons in the lateral hypothalamus (LH) and increased orexin-A level in the VTA. The latter effect was blocked by SHA68. Furthermore, a 30-min restraint stress in mice rein-stated extinguished cocaine CPP and was prevented by SHA68. These results suggest that NPS is released upon stress and subsequently activates LH orexin neurons to release orexins in the VTA. The released orexins then reinstate extinguished cocaine CPP via an OX1R- and endocannabinoid-CB1R-mediated signaling in the VTA.

Stress induces reinstatement of extinguished cocaine conditioned place preference by a sequential signaling via neuropeptide S, orexin, and endocannabinoid

Girolamo Calo;
2021

Abstract

Neurons containing neuropeptide S (NPS) and orexins are activated during stress. Previously, we reported that orexins released during stress, via orexin OX1 receptors (OX1Rs), contribute to the reinstatement of cocaine seeking through endo-cannabinoid/CB1 receptor (CB1R)-mediated dopaminergic disinhibition in the ventral tegmental area (VTA). Here, we further demonstrated that NPS released during stress is an up-stream activator of this orexin-endocannabinoid cascade in the VTA, leading to the reinstatement of cocaine seeking. Mice were trained to acquire cocaine conditioned place preference (CPP) by context-pairing cocaine injections followed by the extinction training with context-pairing saline injections. Interestingly, the extinguished cocaine CPP in mice was significantly reinstated by intra-cerebroventricular injection (i.c.v.) of NPS (1 nmol) in a manner prevented by intraperitoneal injection (i.p.) of SHA68 (50 mg/kg), an NPS receptor antagonist. This NPS-induced cocaine reinstatement was prevented by either i.p. or intra-VTA microinjection (i.vta.) of SB-334867 (15 mg/kg, i.p. or 15 nmol, i.vta.) and AM 251 (1.1 mg/kg, i.p. or 30 nmol, i.vta.), antagonists of OX1Rs and CB1Rs, respectively. Besides, NPS (1 nmol, i.c.v.) increased the number of c-Fos-containing orexin neurons in the lateral hypothalamus (LH) and increased orexin-A level in the VTA. The latter effect was blocked by SHA68. Furthermore, a 30-min restraint stress in mice rein-stated extinguished cocaine CPP and was prevented by SHA68. These results suggest that NPS is released upon stress and subsequently activates LH orexin neurons to release orexins in the VTA. The released orexins then reinstate extinguished cocaine CPP via an OX1R- and endocannabinoid-CB1R-mediated signaling in the VTA.
2021
File in questo prodotto:
File Dimensione Formato  
Chou et al NPS and cocaine AB 2020.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3386413
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact