Landslide hazard mapping is often performed through the identification and analysis of hillslope instability factors, usually managed as thematic data within geographic information systems (GIS). In heuristic approaches, these factors are rated by the attribution of scores based on the assumed role played by each of them in controlling the development of a sliding process. Other more refined methods, based on the principle that the present and the past are keys to the future, have also been developed, thus allowing less subjective analyses in which landslide susceptibility is assessed by statistical relationships between past landslide events and hillslope instability factors. The objective of this research is to define a method with the ability to forecast landslide susceptibility through the application of Artificial Neural Networks (ANNs). The Riomaggiore catchment, a subwatershed of the Reno River basin located in the Northern Apennines (Italy), was chosen as an ideal test site, as it is representative of many of the geomorphological settings within this region. In the present application, two different ANNs, used in classification problems, were set up and applied: one belonging to the category of Multi-Layered Perceptron (MLP) and the other to the Probabilistic Neural Network (PNN) family. The hillslope factors that have been taken into account in the analysis were the following: (a) lithology, (b) slope angle, (c), profile curvature, (d) land cover and (e) upslope contributing area. These factors have been classified on nominal scales, and their intersection allowed 3342 homogeneous domains (Unique Condition Unit, UCU) to be singled out, which correspond to the terrain units utilized in this analysis. The model vector used to train the ANNs is a subset of that derived from the production of Unique Condition Units and consists of 3342 records organized in input and output variable vectors. In particular, the hillslope factors, once classified on nominal scales as binary numbers, represent the 19 input variables, while the presence/ absence of a landslide in a given terrain unit is assumed to be the output variable. The comparison between the most up-to-date landslide inventory of the Riomaggiore catchment and the hazardous areas, as predicted by the ANNs, showed satisfactory results (with a slight preference for the MLP). For this reason, this is an encouraging preliminary approach towards a systematic introduction of ANN-based statistical methods in landslide hazard assessment and mapping. © 2004 Elsevier B.V. All rights reserved.
Artificial Neural Networks applied to landslide susceptibility assessment
Catani F.Methodology
;
2005
Abstract
Landslide hazard mapping is often performed through the identification and analysis of hillslope instability factors, usually managed as thematic data within geographic information systems (GIS). In heuristic approaches, these factors are rated by the attribution of scores based on the assumed role played by each of them in controlling the development of a sliding process. Other more refined methods, based on the principle that the present and the past are keys to the future, have also been developed, thus allowing less subjective analyses in which landslide susceptibility is assessed by statistical relationships between past landslide events and hillslope instability factors. The objective of this research is to define a method with the ability to forecast landslide susceptibility through the application of Artificial Neural Networks (ANNs). The Riomaggiore catchment, a subwatershed of the Reno River basin located in the Northern Apennines (Italy), was chosen as an ideal test site, as it is representative of many of the geomorphological settings within this region. In the present application, two different ANNs, used in classification problems, were set up and applied: one belonging to the category of Multi-Layered Perceptron (MLP) and the other to the Probabilistic Neural Network (PNN) family. The hillslope factors that have been taken into account in the analysis were the following: (a) lithology, (b) slope angle, (c), profile curvature, (d) land cover and (e) upslope contributing area. These factors have been classified on nominal scales, and their intersection allowed 3342 homogeneous domains (Unique Condition Unit, UCU) to be singled out, which correspond to the terrain units utilized in this analysis. The model vector used to train the ANNs is a subset of that derived from the production of Unique Condition Units and consists of 3342 records organized in input and output variable vectors. In particular, the hillslope factors, once classified on nominal scales as binary numbers, represent the 19 input variables, while the presence/ absence of a landslide in a given terrain unit is assumed to be the output variable. The comparison between the most up-to-date landslide inventory of the Riomaggiore catchment and the hazardous areas, as predicted by the ANNs, showed satisfactory results (with a slight preference for the MLP). For this reason, this is an encouraging preliminary approach towards a systematic introduction of ANN-based statistical methods in landslide hazard assessment and mapping. © 2004 Elsevier B.V. All rights reserved.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.