This paper concerns a regional scale warning system for landslides that relies on a decisional algorithm based on the comparison between rainfall recordings and statistically defined thresholds. The latter were based on the total amount of rainfall, which was cumulated considering different time intervals: 1-, 2- and 3-day cumulates took into account the critical rainfall influencing shallow movements, whilst a variable time interval cumulate (up to 240 days) was used to consider the triggering of deep-seated landslides in low permeability terrains. A prototypal version of the model was initially set up to define statistical thresholds. Then, thresholds were calibrated using a database of past georegistered and dated landslides. A validation procedure showed that the calibration highly improves the results and therefore the model was integrated in the regional warning system of Emilia Romagna (Italy) for civil protection purposes. The proposed methodology could be easily implemented in other similar regions and countries where a sufficiently organised meteorological network is present. © 2011 The Author(s).

Rainfall thresholds for the forecasting of landslide occurrence at regional scale

Catani F.
Writing – Original Draft Preparation
2012

Abstract

This paper concerns a regional scale warning system for landslides that relies on a decisional algorithm based on the comparison between rainfall recordings and statistically defined thresholds. The latter were based on the total amount of rainfall, which was cumulated considering different time intervals: 1-, 2- and 3-day cumulates took into account the critical rainfall influencing shallow movements, whilst a variable time interval cumulate (up to 240 days) was used to consider the triggering of deep-seated landslides in low permeability terrains. A prototypal version of the model was initially set up to define statistical thresholds. Then, thresholds were calibrated using a database of past georegistered and dated landslides. A validation procedure showed that the calibration highly improves the results and therefore the model was integrated in the regional warning system of Emilia Romagna (Italy) for civil protection purposes. The proposed methodology could be easily implemented in other similar regions and countries where a sufficiently organised meteorological network is present. © 2011 The Author(s).
2012
File in questo prodotto:
File Dimensione Formato  
Martelloni_et_al_2012.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 860.5 kB
Formato Adobe PDF
860.5 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3385312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 226
  • ???jsp.display-item.citation.isi??? 206
  • OpenAlex ND
social impact