Although shallow landslides are a very widespread phenomenon, large area (e.g. thousands of square kilometres) early warning systems are commonly based on statistical rainfall thresholds, while physically based models are more commonly applied to smaller areas. This work provides a contribution towards the filling of this gap: a forecasting chain is designed assembling a numerical weather prediction model, a statistical rainfall downscaling tool and a geotechnical model for the distributed calculation of the factor of safety on a pixel-by-pixel basis. The forecasting chain can be used to forecast the triggering of shallow landslides with a 48 h lead time and was tested on a 3200 km2 wide area. © 2013 Author(s).
Brief communication A prototype forecasting chain for rainfall induced shallow landslides
Catani F.Methodology
;
2013
Abstract
Although shallow landslides are a very widespread phenomenon, large area (e.g. thousands of square kilometres) early warning systems are commonly based on statistical rainfall thresholds, while physically based models are more commonly applied to smaller areas. This work provides a contribution towards the filling of this gap: a forecasting chain is designed assembling a numerical weather prediction model, a statistical rainfall downscaling tool and a geotechnical model for the distributed calculation of the factor of safety on a pixel-by-pixel basis. The forecasting chain can be used to forecast the triggering of shallow landslides with a 48 h lead time and was tested on a 3200 km2 wide area. © 2013 Author(s).File | Dimensione | Formato | |
---|---|---|---|
Mercogliano_et_al_nhess-2013-552.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.