The well-known Markowitz approach to portfolio allocation, based on expected returns and their covariance, seems to provide questionable results in financial management. One motivation for the pitfall is that financial returns have heavier than Gaussian tails, so the covariance of returns, used in the Markowitz model as a measure of portfolio risk, is likely to provide a loose quantification of the effective risk. Additionally, the Markowitz approach is very sensitive to small changes in either the expected returns or their correlation, often leading to irrelevant portfolio allocations. More recent allocation techniques are based on alternative risk measures, such as value at risk (VaR) and conditional VaR (CVaR), which are believed to be more accurate measures of risk for fat-tailed distributions. Nevertheless, both VaR and CVaR estimates can be influenced by the presence of extreme returns. In this paper, we discuss sensitivity to the presence of extreme returns and outliers when optimizing the allocation, under the constraint of keeping CVaR to a minimum. A robust and efficient approach, based on the forward search, is suggested. A Monte Carlo simulation study shows the advantages of the proposed approach, which outperforms both robust and nonrobust alternatives under a variety of specifications. The performance of the method is also thoroughly evaluated with an application to a set of US stocks.

Robust asset allocation with conditional value at risk using the forward search

Grossi L.;
2020

Abstract

The well-known Markowitz approach to portfolio allocation, based on expected returns and their covariance, seems to provide questionable results in financial management. One motivation for the pitfall is that financial returns have heavier than Gaussian tails, so the covariance of returns, used in the Markowitz model as a measure of portfolio risk, is likely to provide a loose quantification of the effective risk. Additionally, the Markowitz approach is very sensitive to small changes in either the expected returns or their correlation, often leading to irrelevant portfolio allocations. More recent allocation techniques are based on alternative risk measures, such as value at risk (VaR) and conditional VaR (CVaR), which are believed to be more accurate measures of risk for fat-tailed distributions. Nevertheless, both VaR and CVaR estimates can be influenced by the presence of extreme returns. In this paper, we discuss sensitivity to the presence of extreme returns and outliers when optimizing the allocation, under the constraint of keeping CVaR to a minimum. A robust and efficient approach, based on the forward search, is suggested. A Monte Carlo simulation study shows the advantages of the proposed approach, which outperforms both robust and nonrobust alternatives under a variety of specifications. The performance of the method is also thoroughly evaluated with an application to a set of US stocks.
File in questo prodotto:
File Dimensione Formato  
GrossiLaurini2020_ASMBI.pdf

non disponibili

Tipologia: Abstract
Licenza: Accesso privato - non pubblico
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3382250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact