Background: Detailed spectroscopy of neutron-rich odd-A Cu isotopes is of great importance for studying the shell evolution in the region of Ni78. While there is experimental information on excited states in Cu69-73,77,79 isotopes, the information concerning Cu75 is very limited. Purpose: Experimentally observed single-particle, core-coupling, and proton-hole intruder states in Cu75, will complete the systematics of these states in the chain of isotopes. Method: Excited states in Cu75 were populated in the β decay of Ni75 isotopes. The Ni nuclei were produced by the in-flight fission of U238 projectiles, and were separated, identified, and implanted in a highly segmented Si detector array for the detection of the β-decay electrons. The β-delayed γ rays were detected in a HPGe cluster array. Monte Carlo shell model calculations were performed using the A3DA interaction built on the pfg9/2d5/2 model space for both neutrons and protons. Results: A level scheme of Cu75 was built up to ≈4 MeV by performing a γ-γ coincidence analysis. The excited states below 2 MeV were interpreted based on the systematics of neutron-rich odd-A Cu isotopes and the results of the shell model calculations. Conclusions: The evolution of the single-particle, core-coupling, and proton-hole intruder states in the chain of neutron-rich odd-A Cu isotopes is discussed in the present work, in connection with the newly observed level structure of Cu75.

β decay of Ni 75 and the systematics of the low-lying level structure of neutron-rich odd-A Cu isotopes

Otsuka T.;Doornenbal P.;John P. R.;Mengoni D.;
2020

Abstract

Background: Detailed spectroscopy of neutron-rich odd-A Cu isotopes is of great importance for studying the shell evolution in the region of Ni78. While there is experimental information on excited states in Cu69-73,77,79 isotopes, the information concerning Cu75 is very limited. Purpose: Experimentally observed single-particle, core-coupling, and proton-hole intruder states in Cu75, will complete the systematics of these states in the chain of isotopes. Method: Excited states in Cu75 were populated in the β decay of Ni75 isotopes. The Ni nuclei were produced by the in-flight fission of U238 projectiles, and were separated, identified, and implanted in a highly segmented Si detector array for the detection of the β-decay electrons. The β-delayed γ rays were detected in a HPGe cluster array. Monte Carlo shell model calculations were performed using the A3DA interaction built on the pfg9/2d5/2 model space for both neutrons and protons. Results: A level scheme of Cu75 was built up to ≈4 MeV by performing a γ-γ coincidence analysis. The excited states below 2 MeV were interpreted based on the systematics of neutron-rich odd-A Cu isotopes and the results of the shell model calculations. Conclusions: The evolution of the single-particle, core-coupling, and proton-hole intruder states in the chain of neutron-rich odd-A Cu isotopes is discussed in the present work, in connection with the newly observed level structure of Cu75.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3381101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact