PLAnetary Transits and Oscillations of stars (PLATO) is a medium sized mission (M3) selected by the European Space Agency (ESA) for launch in 2026. The PLATO payload includes 26 telescopes all based on a six-element refractive optical scheme. Some components will be eventually manufactured by S-FPL51, N-KZFS11 and S-FTM16 glass whose radiation resistance is partially or totally unknown. The radiation-resistance properties of such materials have been investigated by using a 60Co γ-rays source as probe. Each optical component has been characterized by a depth profile curve which describes the transmission loss as a function of the thickness in dependence of the impinging dose. A model to simulate the throughput of the whole instrument has been developed and used to verify the instrument performance considering different stellar spectra.

Rad-hard properties of the optical glass adopted for the PLATO space telescope refractive components

Corso A. J.;Tessarolo E.;Ragazzoni R.;Viotto V.;Pelizzo M. G.
2018

Abstract

PLAnetary Transits and Oscillations of stars (PLATO) is a medium sized mission (M3) selected by the European Space Agency (ESA) for launch in 2026. The PLATO payload includes 26 telescopes all based on a six-element refractive optical scheme. Some components will be eventually manufactured by S-FPL51, N-KZFS11 and S-FTM16 glass whose radiation resistance is partially or totally unknown. The radiation-resistance properties of such materials have been investigated by using a 60Co γ-rays source as probe. Each optical component has been characterized by a depth profile curve which describes the transmission loss as a function of the thickness in dependence of the impinging dose. A model to simulate the throughput of the whole instrument has been developed and used to verify the instrument performance considering different stellar spectra.
2018
File in questo prodotto:
File Dimensione Formato  
OpticsExpressPLATO2018.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 4.64 MB
Formato Adobe PDF
4.64 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3373854
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact