ATPase/Helicases and nucleases play important roles in DNA end-resection, a critical step during homologous recombination repair in all organisms. In hyperthermophilic archaea the exo-endonuclease NurA and the ATPase HerA cooperate with the highly conserved Mre11-Rad50 complex in 3′ single-stranded DNA (ssDNA) end processing to coordinate repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA complex. In this study we demonstrate that the NurA exonuclease activity is inhibited by the Sulfolobus solfataricus RecQ-like Hel112 helicase. Inhibition occurs both in the presence and in the absence of HerA, but is much stronger when NurA is in complex with HerA. In contrast, the endonuclease activity of NurA is not affected by the presence of Hel112. Taken together these results suggest that the functional interaction between NurA/HerA and Hel112 is important for DNA end-resection in archaeal homologous recombination.
The Sulfolobus solfataricus RecQ-like DNA helicase Hel112 inhibits the NurA/HerA complex exonuclease activity
Massa F.;
2018
Abstract
ATPase/Helicases and nucleases play important roles in DNA end-resection, a critical step during homologous recombination repair in all organisms. In hyperthermophilic archaea the exo-endonuclease NurA and the ATPase HerA cooperate with the highly conserved Mre11-Rad50 complex in 3′ single-stranded DNA (ssDNA) end processing to coordinate repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA complex. In this study we demonstrate that the NurA exonuclease activity is inhibited by the Sulfolobus solfataricus RecQ-like Hel112 helicase. Inhibition occurs both in the presence and in the absence of HerA, but is much stronger when NurA is in complex with HerA. In contrast, the endonuclease activity of NurA is not affected by the presence of Hel112. Taken together these results suggest that the functional interaction between NurA/HerA and Hel112 is important for DNA end-resection in archaeal homologous recombination.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.