We consider the n-dimensional Chaplygin sphere under the assumption that the mass distribution of the sphere is axisymmetric. We prove that, for initial conditions whose angular momentum about the contact point is vertical, the dynamics is quasi-periodic. For n = 4 we perform the reduction by the associated SO(3) symmetry and show that the reduced system is integrable by the Euler-Jacobi theorem.

Integrability of the n-dimensional Axially Symmetric Chaplygin Sphere

Garcia-Naranjo L. C.
2019

Abstract

We consider the n-dimensional Chaplygin sphere under the assumption that the mass distribution of the sphere is axisymmetric. We prove that, for initial conditions whose angular momentum about the contact point is vertical, the dynamics is quasi-periodic. For n = 4 we perform the reduction by the associated SO(3) symmetry and show that the reduced system is integrable by the Euler-Jacobi theorem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3370255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact