Cheap commercial off-the-shelf (COTS) drones have become widely available for consumers in recent years. Unfortunately, they also provide low-cost capabilities for attackers. Therefore, effective methods to detect the presence of non-cooperating rogue drones within a restricted area are highly required. Approaches based on detection of control traffic have been proposed but were not yet shown to work against other benign traffic, such as that generated by wireless security cameras. In this work, we propose a novel drone detection framework based on a Random Forest classification model. In essence, the framework leverages specific patterns in video traffic transmitted by drones. The patterns consist of repetitive synchronization packets (denoted as pivots) which we use as features in the proposed machine learning classifier. We show that our framework can achieve up to 99% detection accuracy over an encrypted WiFi channel using only 20 packets originated from the drone. Our system is able to identify drone transmissions even among very similar WiFi transmission (such as a security camera video stream) and in a noisy scenario with background traffic.

COTS Drone Detection using Video Streaming Characteristics

Tippenhauer N. O.;Conti M.
2021

Abstract

Cheap commercial off-the-shelf (COTS) drones have become widely available for consumers in recent years. Unfortunately, they also provide low-cost capabilities for attackers. Therefore, effective methods to detect the presence of non-cooperating rogue drones within a restricted area are highly required. Approaches based on detection of control traffic have been proposed but were not yet shown to work against other benign traffic, such as that generated by wireless security cameras. In this work, we propose a novel drone detection framework based on a Random Forest classification model. In essence, the framework leverages specific patterns in video traffic transmitted by drones. The patterns consist of repetitive synchronization packets (denoted as pivots) which we use as features in the proposed machine learning classifier. We show that our framework can achieve up to 99% detection accuracy over an encrypted WiFi channel using only 20 packets originated from the drone. Our system is able to identify drone transmissions even among very similar WiFi transmission (such as a security camera video stream) and in a noisy scenario with background traffic.
2021
ACM International Conference Proceeding Series
22nd International Conference on Distributed Computing and Networking, ICDCN 2021
9781450389334
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3369045
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact