In recent years, several schemes have been proposed to detect anomalies and attacks on Cyber-Physical Systems (CPSs) such as Industrial Control Systems (ICSs). Based on the analysis of sensor data, unexpected or malicious behavior is detected. Those schemes often rely on (implicit) assumptions on temporally stable sensor data distributions and invariants between process values. Unfortunately, the proposed schemes often perform not optimally with Recall scores lower than 70% (e.g., missing 3 alarms every 10 anomalies) for some ICS datasets, with unclear root issues. In this work, we propose a general framework to check whether a given ICS dataset has specific properties (stable sensor distributions in normal operations, potentially state-dependent), which then allows to determine whether certain Anomaly Detection approaches can be expected to perform well. We apply our framework to three datasets showing that the behavior of actuators and sensors are very different between Training set and Test set. In addition, we present high-level guides to consider when designing an Anomaly Detection System.

A Statistical Analysis Framework for ICS Process Datasets

Turrin F.;Conti M.
2020

Abstract

In recent years, several schemes have been proposed to detect anomalies and attacks on Cyber-Physical Systems (CPSs) such as Industrial Control Systems (ICSs). Based on the analysis of sensor data, unexpected or malicious behavior is detected. Those schemes often rely on (implicit) assumptions on temporally stable sensor data distributions and invariants between process values. Unfortunately, the proposed schemes often perform not optimally with Recall scores lower than 70% (e.g., missing 3 alarms every 10 anomalies) for some ICS datasets, with unclear root issues. In this work, we propose a general framework to check whether a given ICS dataset has specific properties (stable sensor distributions in normal operations, potentially state-dependent), which then allows to determine whether certain Anomaly Detection approaches can be expected to perform well. We apply our framework to three datasets showing that the behavior of actuators and sensors are very different between Training set and Test set. In addition, we present high-level guides to consider when designing an Anomaly Detection System.
2020
CPSIOTSEC 2020 - Proceedings of the 2020 Joint Workshop on CPS and IoT Security and Privacy
2020 Joint Workshop on CPS and IoT Security and Privacy, CPSIOTSEC 2020
9781450380874
File in questo prodotto:
File Dimensione Formato  
cispa_all_3279.pdf

accesso aperto

Tipologia: Published (publisher's version)
Dimensione 487.3 kB
Formato Adobe PDF
487.3 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3369043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact