In this article, we present a space-frequency theory for spherical harmonics based on the spectral decomposition of a particular space-frequency operator. The presented theory is closely linked to the theory of ultraspherical polynomials on the one hand, and to the theory of Slepian functions on the 2-sphere on the other. Results from both theories are used to prove localization and approximation properties of the new band-limited yet space-localized basis. Moreover, particular weak limits related to the structure of the spherical harmonics provide information on the proportion of basis functions needed to approximate localized functions. Finally, a scheme for the fast computation of the coefficients in the new localized basis is provided.
An alternative to Slepian functions on the unit sphere - A space-frequency analysis based on localized spherical polynomials
Erb W.
;
2015
Abstract
In this article, we present a space-frequency theory for spherical harmonics based on the spectral decomposition of a particular space-frequency operator. The presented theory is closely linked to the theory of ultraspherical polynomials on the one hand, and to the theory of Slepian functions on the 2-sphere on the other. Results from both theories are used to prove localization and approximation properties of the new band-limited yet space-localized basis. Moreover, particular weak limits related to the structure of the spherical harmonics provide information on the proportion of basis functions needed to approximate localized functions. Finally, a scheme for the fast computation of the coefficients in the new localized basis is provided.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.