In this article, we present a space-frequency theory for spherical harmonics based on the spectral decomposition of a particular space-frequency operator. The presented theory is closely linked to the theory of ultraspherical polynomials on the one hand, and to the theory of Slepian functions on the 2-sphere on the other. Results from both theories are used to prove localization and approximation properties of the new band-limited yet space-localized basis. Moreover, particular weak limits related to the structure of the spherical harmonics provide information on the proportion of basis functions needed to approximate localized functions. Finally, a scheme for the fast computation of the coefficients in the new localized basis is provided.

An alternative to Slepian functions on the unit sphere - A space-frequency analysis based on localized spherical polynomials

Erb W.
;
2015

Abstract

In this article, we present a space-frequency theory for spherical harmonics based on the spectral decomposition of a particular space-frequency operator. The presented theory is closely linked to the theory of ultraspherical polynomials on the one hand, and to the theory of Slepian functions on the 2-sphere on the other. Results from both theories are used to prove localization and approximation properties of the new band-limited yet space-localized basis. Moreover, particular weak limits related to the structure of the spherical harmonics provide information on the proportion of basis functions needed to approximate localized functions. Finally, a scheme for the fast computation of the coefficients in the new localized basis is provided.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3368989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact