We prove a Bonnet–Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivatives up to the third order of the fundamental tensors, then the manifold is compact and we give a sharp bound on its sub-Riemannian diameter.
A Bonnet–Myers type theorem for quaternionic contact structures
Barilari D.;
2019
Abstract
We prove a Bonnet–Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivatives up to the third order of the fundamental tensors, then the manifold is compact and we give a sharp bound on its sub-Riemannian diameter.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CVPDE-BarIva-Quatenionic.pdf
solo utenti autorizzati
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
597.75 kB
Formato
Adobe PDF
|
597.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1703.04340.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
332.3 kB
Formato
Adobe PDF
|
332.3 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.