We prove a Bonnet–Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivatives up to the third order of the fundamental tensors, then the manifold is compact and we give a sharp bound on its sub-Riemannian diameter.

A Bonnet–Myers type theorem for quaternionic contact structures

Barilari D.;
2019

Abstract

We prove a Bonnet–Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivatives up to the third order of the fundamental tensors, then the manifold is compact and we give a sharp bound on its sub-Riemannian diameter.
File in questo prodotto:
File Dimensione Formato  
CVPDE-BarIva-Quatenionic.pdf

solo utenti autorizzati

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 597.75 kB
Formato Adobe PDF
597.75 kB Adobe PDF Visualizza/Apri   Richiedi una copia
1703.04340.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 332.3 kB
Formato Adobe PDF
332.3 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3368976
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact