A large number of studies in cognitive science have revealed that probabilistic outcomes of certain human decisions do not agree with the axioms of classical probability theory. The field of Quantum Cognition provides an alternative probabilistic model to explain such paradoxical findings. It posits that cognitive systems have an underlying quantum-like structure, especially in decision-making under uncertainty. In this paper, we hypothesise that relevance judgement, being a multidimensional, cognitive concept, can be used to probe the quantum-like structure for modelling users’ cognitive states in information seeking. Extending from an experiment protocol inspired by the Stern-Gerlach experiment in Quantum Physics, we design a crowd-sourced user study to show violation of the Kolmogorovian probability axioms as a proof of the quantum-like structure, and provide a comparison between a quantum probabilistic model and a Bayesian model for predictions of relevance.
Quantum-Like Structure in Multidimensional Relevance Judgements
Tiwari P.;Melucci M.
2020
Abstract
A large number of studies in cognitive science have revealed that probabilistic outcomes of certain human decisions do not agree with the axioms of classical probability theory. The field of Quantum Cognition provides an alternative probabilistic model to explain such paradoxical findings. It posits that cognitive systems have an underlying quantum-like structure, especially in decision-making under uncertainty. In this paper, we hypothesise that relevance judgement, being a multidimensional, cognitive concept, can be used to probe the quantum-like structure for modelling users’ cognitive states in information seeking. Extending from an experiment protocol inspired by the Stern-Gerlach experiment in Quantum Physics, we design a crowd-sourced user study to show violation of the Kolmogorovian probability axioms as a proof of the quantum-like structure, and provide a comparison between a quantum probabilistic model and a Bayesian model for predictions of relevance.File | Dimensione | Formato | |
---|---|---|---|
978-3-030-45439-5_48.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2001.07075v1.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Altro
Dimensione
756.36 kB
Formato
Adobe PDF
|
756.36 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.