Many neural networks for graphs are based on the graph convolution operator, proposed more than a decade ago. Since then, many alternative definitions have been proposed, that tend to add complexity (and non-linearity) to the model. In this paper, we follow the opposite direction by proposing a linear graph convolution operator. Despite its simplicity, we show that our convolution operator is more theoretically grounded than many proposals in literature, and shows improved predictive performance.
Linear graph convolutional networks
Navarin N.;Erb W.;Pasa L.;Sperduti A.
2020
Abstract
Many neural networks for graphs are based on the graph convolution operator, proposed more than a decade ago. Since then, many alternative definitions have been proposed, that tend to add complexity (and non-linearity) to the model. In this paper, we follow the opposite direction by proposing a linear graph convolution operator. Despite its simplicity, we show that our convolution operator is more theoretically grounded than many proposals in literature, and shows improved predictive performance.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ES2020-96-2.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.