H-NS proteins act as osmotic sensors translating changes in osmolarity into altered DNA binding properties, thus, regulating enterobacterial genome organization and genes transcription. The molecular mechanism underlying the switching process and its conservation among H-NS family members remains elusive. Here, we focus on the H-NS family protein MvaT from Pseudomonas aeruginosa and demonstrate experimentally that its protomer exists in two different conformations, corresponding to two different functional states. In the half-opened state (dominant at low salt) the protein forms filaments along DNA, in the fully opened state (dominant at high salt) the protein bridges DNA. This switching is a direct effect of ionic strength on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of MvaT. The asymmetric charge distribution and intramolecular interactions are conserved among the H-NS family of proteins. Therefore, our study establishes a general paradigm for the molecular mechanistic basis of the osmosensitivity of H-NS proteins.

Structural basis for osmotic regulation of the DNA binding properties of H-NS proteins

Giachin G.;
2020

Abstract

H-NS proteins act as osmotic sensors translating changes in osmolarity into altered DNA binding properties, thus, regulating enterobacterial genome organization and genes transcription. The molecular mechanism underlying the switching process and its conservation among H-NS family members remains elusive. Here, we focus on the H-NS family protein MvaT from Pseudomonas aeruginosa and demonstrate experimentally that its protomer exists in two different conformations, corresponding to two different functional states. In the half-opened state (dominant at low salt) the protein forms filaments along DNA, in the fully opened state (dominant at high salt) the protein bridges DNA. This switching is a direct effect of ionic strength on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of MvaT. The asymmetric charge distribution and intramolecular interactions are conserved among the H-NS family of proteins. Therefore, our study establishes a general paradigm for the molecular mechanistic basis of the osmosensitivity of H-NS proteins.
2020
File in questo prodotto:
File Dimensione Formato  
gkz1226.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 8.08 MB
Formato Adobe PDF
8.08 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3366120
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
  • OpenAlex ND
social impact