Mutations in the prion protein (PrP) can cause spontaneous prion diseases in humans (Hu) and animals. In transgenic mice, mutations can determine the susceptibility to the infection of different prion strains. Some of these mutations also show a dominant-negative effect, thus halting the replication process by which wild type mouse (Mo) PrP is converted into Mo scrapie. Using all-atom molecular dynamics (MD) simulations, here we studied the structure of HuPrP, MoPrP, 10 Hu/MoPrP chimeras, and 1 Mo/sheepPrP chimera in explicit solvent. Overall, ~2 μs of MD were collected. Our findings suggest that the interactions between α1 helix and N-terminal of α3 helix are critical in prion propagation, whereas the β2-α2 loop conformation plays a role in the dominant-negative effect. © 2012 Taylor & Francis.

Dominant-negative effects in prion diseases: Insights from molecular dynamics simulations on mouse prion protein chimeras

Giachin G.;
2013

Abstract

Mutations in the prion protein (PrP) can cause spontaneous prion diseases in humans (Hu) and animals. In transgenic mice, mutations can determine the susceptibility to the infection of different prion strains. Some of these mutations also show a dominant-negative effect, thus halting the replication process by which wild type mouse (Mo) PrP is converted into Mo scrapie. Using all-atom molecular dynamics (MD) simulations, here we studied the structure of HuPrP, MoPrP, 10 Hu/MoPrP chimeras, and 1 Mo/sheepPrP chimera in explicit solvent. Overall, ~2 μs of MD were collected. Our findings suggest that the interactions between α1 helix and N-terminal of α3 helix are critical in prion propagation, whereas the β2-α2 loop conformation plays a role in the dominant-negative effect. © 2012 Taylor & Francis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3366114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact