Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes. In addition, it is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood. The classical concept implies that protein sequence defines structure, which in turn determines function; that is, function can be inferred from the sequence and its structure. Even when protein sequences diverge during evolution, for example, after gene duplication, the overall fold of their structures remains roughly the same. Therefore, structural similarity between proteins can reveal distant evolutionary relationships that are not easily detectable using sequence-based methods.
Classification of intrinsically disordered regions and proteins
Fuxreiter M.;Pappu R. V.;
2014
Abstract
Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes. In addition, it is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood. The classical concept implies that protein sequence defines structure, which in turn determines function; that is, function can be inferred from the sequence and its structure. Even when protein sequences diverge during evolution, for example, after gene duplication, the overall fold of their structures remains roughly the same. Therefore, structural similarity between proteins can reveal distant evolutionary relationships that are not easily detectable using sequence-based methods.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.