Computational design is becoming an integral component in developing novel enzymatic activities. Catalytic efficiencies of man-made enzymes however are far behind their natural counterparts. The discrepancy between laboratory and naturally evolved enzymes suggests that a major catalytic factor is still missing in the computational process. Reorganization energy, which is the origin of catalytic power of natural enzymes, has not been exploited yet for design. As exemplified in case of KE07 Kemp eliminase, this quantity is optimized by directed evolution. Mutations beneficial for evolution, but without direct impact on catalysis can be identified based on contributions to reorganization energy. We propose to incorporate the reorganization energy in scaffold selection to provide highly evolvable initial designs. © 2014 The Authors.

The role of reorganization energy in rational enzyme design

Fuxreiter M.;
2014

Abstract

Computational design is becoming an integral component in developing novel enzymatic activities. Catalytic efficiencies of man-made enzymes however are far behind their natural counterparts. The discrepancy between laboratory and naturally evolved enzymes suggests that a major catalytic factor is still missing in the computational process. Reorganization energy, which is the origin of catalytic power of natural enzymes, has not been exploited yet for design. As exemplified in case of KE07 Kemp eliminase, this quantity is optimized by directed evolution. Mutations beneficial for evolution, but without direct impact on catalysis can be identified based on contributions to reorganization energy. We propose to incorporate the reorganization energy in scaffold selection to provide highly evolvable initial designs. © 2014 The Authors.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1367593114000350-main.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
  • OpenAlex ND
social impact