In this note we introduce a new model for the mailing problem in branched transportation that takes into account the orientation of the moving particles. This gives an effective answer to Bernot et al. (2009, Problem 15.9). Moreover we define a convex relaxation in terms of rectifiable currents with group coefficients. We provide the problem with a notion of calibration. Using similar techniques we define a convex relaxation and a corresponding notion of calibration for a variant of the Steiner tree problem in which a connectedness constraint is assigned only among a certain partition of a given set of finitely many points.

The oriented mailing problem and its convex relaxation

Massaccesi A.;
2020

Abstract

In this note we introduce a new model for the mailing problem in branched transportation that takes into account the orientation of the moving particles. This gives an effective answer to Bernot et al. (2009, Problem 15.9). Moreover we define a convex relaxation in terms of rectifiable currents with group coefficients. We provide the problem with a notion of calibration. Using similar techniques we define a convex relaxation and a corresponding notion of calibration for a variant of the Steiner tree problem in which a connectedness constraint is assigned only among a certain partition of a given set of finitely many points.
2020
File in questo prodotto:
File Dimensione Formato  
CMMPT.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 777.11 kB
Formato Adobe PDF
777.11 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact