Experimental evidence suggests that DNA-mediated redox signaling between high-potential [Fe4S4] proteins is relevant to DNA replication and repair processes, and protein-mediated charge transfer (CT) between [Fe4S4] clusters and nucleic acids is a fundamental process of the signaling and repair mechanisms. We analyzed the dominant CT pathways in the base excision repair glycosylase MutY using molecular dynamics simulations and hole hopping pathway analysis. We find that the adenine nucleobase of the mismatched A·oxoG DNA base pair facilitates [Fe4S4]-DNA CT prior to adenine excision by MutY. We also find that the R153L mutation in MutY (linked to colorectal adenomatous polyposis) influences the dominant [Fe4S4]-DNA CT pathways and appreciably decreases their effective CT rates.

Correlation between Charge Transport and Base Excision Repair in the MutY-DNA Glycosylase

Migliore, Agostino;
2021

Abstract

Experimental evidence suggests that DNA-mediated redox signaling between high-potential [Fe4S4] proteins is relevant to DNA replication and repair processes, and protein-mediated charge transfer (CT) between [Fe4S4] clusters and nucleic acids is a fundamental process of the signaling and repair mechanisms. We analyzed the dominant CT pathways in the base excision repair glycosylase MutY using molecular dynamics simulations and hole hopping pathway analysis. We find that the adenine nucleobase of the mismatched A·oxoG DNA base pair facilitates [Fe4S4]-DNA CT prior to adenine excision by MutY. We also find that the R153L mutation in MutY (linked to colorectal adenomatous polyposis) influences the dominant [Fe4S4]-DNA CT pathways and appreciably decreases their effective CT rates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3365080
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact