We study the dependence of the first eigenvalue of the Finsler p-Laplacian and the corresponding eigenfunctions on perturbation of the domain and we generalize a few results known for the standard p-Laplacian. In particular, we prove a Frechét differentiability result for the eigenvalues, compute the corresponding Hadamard formulas and prove a continuity result for the eigenfunctions. Finally, we briefly discuss a well-known overdetermined problem and we show how to deduce the Rellich–Pohozaev identity for the Finsler p-Laplacian from the Hadamard formula
EIGENVALUES OF THE FINSLER p‐LAPLACIAN ON VARYING DOMAINS
Lamberti, Pier Domenico
2020
Abstract
We study the dependence of the first eigenvalue of the Finsler p-Laplacian and the corresponding eigenfunctions on perturbation of the domain and we generalize a few results known for the standard p-Laplacian. In particular, we prove a Frechét differentiability result for the eigenvalues, compute the corresponding Hadamard formulas and prove a continuity result for the eigenfunctions. Finally, we briefly discuss a well-known overdetermined problem and we show how to deduce the Rellich–Pohozaev identity for the Finsler p-Laplacian from the Hadamard formulaFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
db_Lamb.pdf
accesso aperto
Descrizione: versione postprint degli autori
Tipologia:
Postprint (accepted version)
Licenza:
Accesso gratuito
Dimensione
395.6 kB
Formato
Adobe PDF
|
395.6 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.