We present a new evolutionary model that describes the population properties of radio sources at frequencies ≲5 GHz, thus complementing the De Zotti et al. model, holding at higher frequencies. We find that simple analytic luminosity evolution is still sufficient to fit the wealth of available data on local luminosity functions, multifrequency source counts and redshift distributions. However, the fit requires a luminosity-dependent decline of source luminosities at high redshifts, at least for steep-spectrum sources, thus confirming earlier indications of a 'downsizing' also for radio sources. The upturn of source counts at sub-mJy levels is accounted for by a straightforward extrapolation, using the empirical far-infrared (far-IR)/radio correlation, of evolutionary models matching the far-IR counts and redshift distributions of star-forming galaxies. We also discuss the implications of the new model for the interpretation of data on large-scale clustering of radio sources and on the integrated Sachs-Wolfe (ISW) effect, and for the investigation of the contribution of discrete sources to the extragalactic background. As for the ISW effect, a new analysis, exploiting a very clean cosmic microwave background map, yields at a substantially higher significance than reported before. © 2010 The Authors. Journal compilation. © 2010 RAS.

A model for the cosmological evolution of low-frequency radio sources

Massardi M.;Bonaldi A.;Negrello M.;Raccanelli A.;de Zotti G.
2010

Abstract

We present a new evolutionary model that describes the population properties of radio sources at frequencies ≲5 GHz, thus complementing the De Zotti et al. model, holding at higher frequencies. We find that simple analytic luminosity evolution is still sufficient to fit the wealth of available data on local luminosity functions, multifrequency source counts and redshift distributions. However, the fit requires a luminosity-dependent decline of source luminosities at high redshifts, at least for steep-spectrum sources, thus confirming earlier indications of a 'downsizing' also for radio sources. The upturn of source counts at sub-mJy levels is accounted for by a straightforward extrapolation, using the empirical far-infrared (far-IR)/radio correlation, of evolutionary models matching the far-IR counts and redshift distributions of star-forming galaxies. We also discuss the implications of the new model for the interpretation of data on large-scale clustering of radio sources and on the integrated Sachs-Wolfe (ISW) effect, and for the investigation of the contribution of discrete sources to the extragalactic background. As for the ISW effect, a new analysis, exploiting a very clean cosmic microwave background map, yields at a substantially higher significance than reported before. © 2010 The Authors. Journal compilation. © 2010 RAS.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3363887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 81
  • OpenAlex ND
social impact