We consider a differential model describing neuro-physiologi-cal contrast perception phenomena induced by surrounding orientations. The mathematical formulation relies on a cortical-inspired modelling [11] largely used over the last years to describe neuron interactions in the primary visual cortex (V1) and applied to several image processing problems [14, 15, 21]. Our model connects to Wilson-Cowan-type equations [26] and it is analogous to the one used in [3, 4, 16] to describe assimilation and contrast phenomena, the main novelty being its explicit dependence on local image orientation. To confirm the validity of the model, we report some numerical tests showing its ability to explain orientation-dependent phenomena (such as grating induction) and geometric-optical illusions [18, 24] classically explained only by filtering-based techniques [7, 20].
A Cortical-Inspired Model for Orientation-Dependent Contrast Perception: A Link with Wilson-Cowan Equations
Franceschi V.;
2019
Abstract
We consider a differential model describing neuro-physiologi-cal contrast perception phenomena induced by surrounding orientations. The mathematical formulation relies on a cortical-inspired modelling [11] largely used over the last years to describe neuron interactions in the primary visual cortex (V1) and applied to several image processing problems [14, 15, 21]. Our model connects to Wilson-Cowan-type equations [26] and it is analogous to the one used in [3, 4, 16] to describe assimilation and contrast phenomena, the main novelty being its explicit dependence on local image orientation. To confirm the validity of the model, we report some numerical tests showing its ability to explain orientation-dependent phenomena (such as grating induction) and geometric-optical illusions [18, 24] classically explained only by filtering-based techniques [7, 20].File | Dimensione | Formato | |
---|---|---|---|
Bertalmio_SSVMCV2019_cortic.pdf
accesso aperto
Tipologia:
Postprint (accepted version)
Licenza:
Accesso libero
Dimensione
684.08 kB
Formato
Adobe PDF
|
684.08 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.