We address the double bubble problem for the anisotropic Grushin perimeter Pα, α ≥ 0, and the Lebesgue measure in R2, in the case of two equal volumes. We assume that the contact interface between the bubbles lies on either the vertical or the horizontal axis. We first prove existence of minimizers via the direct method by symmetrization arguments and then characterize them in terms of the given area by first variation techniques. Even though no regularity theory is available in this setting, we prove that angles at which minimal boundaries intersect satisfy the standard 120-degree rule up to a suitable change of coordinates. While for α = 0 the Grushin perimeter reduces to the Euclidean one and both minimizers coincide with the symmetric double bubble found in Foisy et al. [Pacific J. Math. 159 (1993) 47–59], for α = 1 vertical interface minimizers have Grushin perimeter strictly greater than horizontal interface minimizers. As the latter ones are obtained by translating and dilating the Grushin isoperimetric set found in Monti and Morbidelli [J. Geom. Anal. 14 (2004) 355–368], we conjecture that they solve the double bubble problem with no assumptions on the contact interface.

Symmetric double bubbles in the grushin plane

Franceschi V.
;
Stefani G.
2019

Abstract

We address the double bubble problem for the anisotropic Grushin perimeter Pα, α ≥ 0, and the Lebesgue measure in R2, in the case of two equal volumes. We assume that the contact interface between the bubbles lies on either the vertical or the horizontal axis. We first prove existence of minimizers via the direct method by symmetrization arguments and then characterize them in terms of the given area by first variation techniques. Even though no regularity theory is available in this setting, we prove that angles at which minimal boundaries intersect satisfy the standard 120-degree rule up to a suitable change of coordinates. While for α = 0 the Grushin perimeter reduces to the Euclidean one and both minimizers coincide with the symmetric double bubble found in Foisy et al. [Pacific J. Math. 159 (1993) 47–59], for α = 1 vertical interface minimizers have Grushin perimeter strictly greater than horizontal interface minimizers. As the latter ones are obtained by translating and dilating the Grushin isoperimetric set found in Monti and Morbidelli [J. Geom. Anal. 14 (2004) 355–368], we conjecture that they solve the double bubble problem with no assumptions on the contact interface.
2019
File in questo prodotto:
File Dimensione Formato  
FranceschiStefani.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 736.26 kB
Formato Adobe PDF
736.26 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3363842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact